

New Mexico Traffic Crash Database

Occupant-Level Data Dictionary and User's Guide

Publication Date: November 2019

A technical guide to the traffic crash data collected by the New Mexico Department of Transportation, Traffic Safety Division, Traffic Records Bureau (NMDOT).

This document is maintained by the University of New Mexico, Geospatial and Population Studies, Traffic Research Unit (TRU).

Distributed in compliance with New Mexico Statute 66-7-214 as a reference source regarding New Mexico traffic crashes.

Introduction

TYPES OF DATA

The crash data are structured in three levels.

Crash Level

Crash-level data contains information about the **overall crash**, such as location and date. It also contains the most commonly requested aggregated data, such as **the number of people killed in each crash**. A dataset of crash-level data contains one row for each crash.

Vehicle Level

Vehicle-level data contains information about each **vehicle** involved in a crash, along with information about the **driver** of each vehicle. **Pedestrians** and **pedalcyclists** are also included as drivers. A dataset of vehicle-level data contains one row for each vehicle. When combining datasets, certain crash-level variables will be repeated for each vehicle in the crash.

Occupant Level

Occupant-level data contains information about **all people involved in a crash**, both passengers and drivers (including pedestrians and pedalcyclists). A dataset of occupant-level data contains one row for each person involved in a crash. When combining datasets, certain crash-level and vehicle-level variables will be repeated for each person in the crash.

<u>ENTRIES</u>

Entries in this data dictionary describe and explain the database fields (variables). Each entry describes data that can be displayed in a spreadsheet column. Entries contain the following components.

Full Name

A name used to describe each entry. This full name is usually more clear than the name given for the database field. A table of contents on Page 5 lists all full names in the order they occur in this dictionary.

Database Field

The name of the field in the database. Fields are also called variables. Fields are given short names for convenience in the database. An index of database fields in alphabetical order is available on Page 22.

Туре

Three types of data are contained in the NMDOT crash database: character, numeric, and date. Character fields may contain letters, numbers or other symbols. Numeric fields can contain only numbers. Date fields are special numeric data types. When requesting data, it is important to state your preference for either database codes or conversion to a more clear designation, as described in this dictionary. The conversion is performed by TRU in a SAS database, using the SAS conversion formats listed in this dictionary. Only certain fields have this conversion option.

Source

Field data are usually either gleaned directly from the Uniform Crash Report (UCR form) or derived from the UCR form. For example, the UCR form has a space for the crash date. From the date, the database derives a field specifically for the year. Several derived fields are based on a geographic information system or created during the data entry process. The Source element also indicates whether the variable applies to the crash level, occupant level or vehicle level.

Length

The length indicates the length of the field in SAS.

Description

The description provides an explanation about the field, such as variable options and code explanations. This component may include historical information, if the field was different before the database was changed in 2012. For databases older than 2012, see the previous data dictionary.

<u>KEY</u>

The key is the number by which a particular record is identified in the database. In the case of reports in the NMDOT crash database, the UCR Number, Vehicle Number, and Person Number are the primary information used to identify and call each unique database record. For multi-year datasets, the Year must also be a key, because occasionally an identical UCR Number will be used in different years.

<u>NEW CODES FOR DATA QUALITY</u>

Starting in 2013, new codes were added for monitoring data quality.

IC or 98 = Indicates the UCR form contained an **invalid code** for that field. **LB or 99** =Indicates the field on the UCR form was **left blank**.

In fields where 98 and 99 can be valid (for example, age), codes such as 999 and 998 are used.

Change Record

Date	Field Name	Description of Change
Jun 14, 2019	SeatPos	Identified "FS = Fourth in seat" as obsolete after 2019.
Jun 14, 2019	OPProperlyUsed	Identified "I = Indeterminate" as obsolete after 2019.
Jun 14, 2019	OPCode	Identified "7 = Ejected from vehicle" and "8 = Child Restraint Used – Seat Type Unknown" as obsolete after 2019.

Table of Contents by Full Name

1.	UCR Number 6
2.	Crash Date 6
3.	Year 6
4.	Vehicle Number 6
5.	Person Number 6
6.	Passenger Number 7
7.	First Name 7
8.	Last Name7
9.	Middle Name 7
10.	Age 7
11.	Sex 8
12.	Race
13.	Injury
14.	Seat Position10
15.	Occupant Protection Code11
16.	Occupant Protection Properly Used12
17.	Airbag Deployed12
18.	Ejected12
19.	EMS Number12
20.	Medical Transportation13
21.	Belt 13
22.	Helmet
23.	Driver Action - Parked14
24.	Vehicle Type14
25.	Vehicle Body Style 15
26.	Alcohol Involvement of Vehicle Driver 16

27.	Drug Involvement of Vehicle Driver16
28.	Alcohol Involvement in Crash16
29.	Drug Involvement in Crash16
30.	Pedestrian Involvement in Crash17
31.	Motorcycle Involvement in Crash17
32.	Pedalcyclist Involvement in Crash17
33.	Heavy Truck Involvement in Crash17
34.	Hazardous Material Involvement in Crash17
35.	Top Factor Contributing to Crash18
36.	Top Contributing Factor of Vehicle18
37.	Law Enforcement Agency18
38.	County18
39.	City18
40.	Urban or Rural Designation19
41.	Road System19
42.	Crash Severity19
43.	Crash Classification19
44.	Crash Classification Analysis Code19
45.	Light
46.	Military Time20
47.	Hour20
48.	Day of Week20
49.	Month
50.	File Location
51.	Image Location21

UCR Number 1.

Database Field = UCRnumber Source = UCR form, crash-level variable Type = Character

Length = 13

The Uniform Crash Report (UCR) Number serves as the unique identifier within a given year that identifies a given crash within New Mexico for all the vehicles involved in the crash. When analyzing data from multiple years, the Year field and the UCR Number field should be used together as the unique key identifier for any crash, because there are occasionally identical UCR Numbers used in different years. Before 2012, this field was called Report. See crash-level data dictionary for more details.

2. **Crash Date**

Database Field = CrashDate Source = UCR form, crash-level variable Type = Numeric [Displayed with SAS date MMDDYY10.] Length = 8

This field indicates the date on which the crash occurred.

3. Year

Database Field = Year Source = Derived, crash-level variable Type = Numeric

This field indicates the year of the crash in the form YYYY. It is derived from CrashDate.

4. Vehicle Number

Database Field = VehNo Source = Derived, vehicle-level variable Type = Numeric

This field indicates the number that uniquely identifies each motor vehicle, pedestrian or pedalcyclist involved in the crash. Combined with the UCR Number and Year, it creates a unique identifier for each vehicle. The number follows the sequence used on the Uniform Crash Report: 1, 2, 3, etc.

5. Person Number

Database Field = PPLNo Source = Derived, occupant-level variable Type = Numeric

This field indicates the number that uniquely identifies each person in each motor vehicle, pedestrian or pedalcyclist involved in the crash. Combined with the UCR Number, Year, and VehNo, it creates a unique identifier for each person. For each vehicle, the number follows the sequence: 100 (driver), 101 (right front passenger, if any), 102, 103, etc. This field became available starting in 2012.

Length = 3

Length = 3

Length = 8

6. Passenger Number

Database Field = OccNo Source = Derived, occupant-level variable Type = Numeric

Length = 8

This field indicates the number that uniquely identifies each passenger in each motor vehicle involved in the crash. For each vehicle, the number follows the sequence: 1 (right front passenger, if any), 2, 3, etc. This field will be blank for any motor vehicle drivers, pedestrians or pedalcyclists. This field became available starting in 2012.

7. First Name

Database Field = FirstName Source = UCR form, occupant-level variable Type = Character

Length = 25

Length = 67

Length = 20

This field indicates the occupant's first name. Before 2012, only the first letter of the first name was entered into the database. This field contains personal identifiers.

8. Last Name

Database Field =LastName Source = UCR form, occupant-level variable Type = Character

This field indicates the occupant's last name. This field contains personal identifiers.

9. Middle Name

Database Field = MiddleName Source = UCR form, occupant-level variable Type = Character

This field indicates the occupant's middle name. This field contains personal identifiers. This field became available starting in 2012.

10. Age

Database Field = Age Source = UCR form, occupant-level variable Type = Numeric [Convert to text with SAS format DAGE.] Length = 3

This field indicates the occupant's age. A value of 1 indicates all infants up to but not including age 2. Generally, if age and sex data are both missing on the UCR, the data on the occupant is considered unreliable. Many times, both fields are left blank because of hit-and-run crashes.

Variable Options Other Than Ages 2 to 98

0 = Missing data 99 = 99 and Over 998 = Invalid code 999 = Left blank

11. SexDatabase Field = SexSource = UCR form, occupant-level variableType = Character [Convert to text with SAS format \$SEX.]

Length = 3

This field indicates the occupant's sex. Generally, if age and sex data are both missing on the UCR, the data on the occupant is considered unreliable. Many times, both fields are left blank because of hit-and-run crashes.

<u>Variable Options</u> F = Female M = Male 98 = Invalid code 99 = Left blank

12. Race

 Database Field = Race

 Source = UCR form, occupant-level variable

 Type = Character [Convert to text with SAS format \$RACE.]

 Length = 4

This field indicates the occupant's race. It is often left blank. This field became available starting in 2012. This field contains personal identifiers.

- A = Asian
- B = Black
- C = Caucasian non-Hispanic
- H = Hispanic
- I = American Indian
- O = Other
- 98 = Invalid code
- 99 = Left blank

13. Injury

 Database Field = Injury

 Source = UCR form, occupant-level variable

 Type = Character [Convert to text with SAS format \$INJURY.]

Length = 2

This field indicates the most severe injury to the occupant, as observed by the officer at the crash scene. If the occupant dies within 30 days due to injuries sustained from the crash, the injury is considered fatal. When injury code is left blank, it is changed to code "O" during cleaning. The narratives of these crashes show they are mostly minor fender-benders or hit-and-run crashes.

- ✓ Code K is also known as a Class K injury, fatal injury and fatality.
- ✓ Code A is also known as a Class A injury, suspected serious injury and incapacitating injury.
- ✓ Code B is also known as a Class B injury, suspected minor injury and visible injury.
- ✓ Code C is also known as a Class C injury, possible injury, complaint of injury, and non-visible injury.
- ✓ Code O is also known as a Class O injury, and represents no injury.

In 2014, the FHWA revised the MMUCC definition for suspected serious injuries (Class A injuries). It is now defined as any injury other than fatal that results in one or more of the following:

- Severe laceration resulting in exposure of underlying tissues/muscle/organs or resulting in significant loss of blood
- Broken or distorted extremity (arm or leg)
- Crush injuries
- Suspected skull, chest, or abdominal injury other than bruises or minor lacerations
- Significant burns (second and third degree burns over 10% or more of the body)
- Unconsciousness when taken from the crash scene
- Paralysis

- K = Killed(K)
- A = Suspected serious injury (A)
- B = Suspected minor injury (B)
- C = Complaint of injury (C)
- O = No apparent injury (O)

14. Seat PositionDatabase Field = SeatPosSource = UCR form, occupant-level variableType = Character [Convert to text with SAS format \$SEATPOS.]Length = 15

This field indicates the seat position of the person. This field is left blank about 25 percent of the time for drivers. The officer on the scene may not know the exact seat position of all occupants. Also, when someone is ejected from the vehicle, it is difficult to tell where he or she was sitting.

- ✓ Do not rely on codes LF and MD to identify drivers: Data on the seat position may be missing. Instead, use vehicle-level data for analyzing drivers.
- ✓ Do not use this field to identify motorcyclists or ATV riders, because the center front (CF) seat position can indicate a motorcycle driver or center-front seat passenger. To identify motorcyclists, use the fields TypeV or VeBodyStyle.
- ✓ To identify front-seat occupants, use codes LF, RF, CF, and, due to missing seat position data, any record with a File field value of cYY.vehicle. Also exclude at least TypeV codes 5, 6 and 7 (motorcycles, pedestrians and pedalcyclists).
- ✓ Pedestrians and pedalcyclists, who are categorized as drivers of non-motorized vehicles, are identified by seat position values of PD and PC. Due to extensive cleaning, pedestrian and pedalcyclist (PD, PC) seat positions are very reliable and will match the field TypeV. However, it's best to analyze pedestrians and pedalcyclists using seat position in the vehicle-level file, because they are considered drivers, for whom more data are collected.

Variable Options

JP = Jumped from vehicle

BA = Baby in arms	LF = Left front	RR = Right rear
BP = Bus passenger	LR = Left rear	RT = Right 3rd seat
CF = Center front	LS = Lap sitter	SS = Semi sleeper
CM =Truck camper	LT = Left 3rd seat	TB = Truck bed
CR = Center rear	MD = Motorcycle driver	TD = On towed device
CT = Center 3rd seat	MH = Motorhome	$TO = Trailer \ occupant$
EX = Riding on motor vehicle	MP = Motorcycle passenger	UN =Unknown
exterior	NA = Not applicable	VR = Rear of van
FS = Fourth in seat	OT = All others	98 = Invalid code
(obsolete after 2019)	PC = Pedalcyclist	99 = Left blank
FV = Fell from vehicle	PD = Pedestrian	

RF = Right front

15. Occupant Protection Code

Database Field = OPCode Source = UCR form, occupant-level variable Type = Character [Convert to text with SAS format \$OPCODE.] Length = 3

This field indicates the type of occupant protection (such as a seatbelt or helmet) and whether it was used. This field became available starting in 2012. Before 2012, only the variable Belt was available, which had fewer options about child restraints and helmet usage. Use the OPCode variable to analyze seat belt and helmet usage.

- ✓ For analysis of only drivers, use the DrOPCode variable from the vehicle-level data.
- ✓ A passenger-vehicle occupant is considered unbelted if codes 1, 2, 4, 7, or 8D are reported. If a passenger-vehicle occupant is ejected (code 7), it is assumed that the person was not belted.
- ✓ To analyze seat belt usage of occupants of only passenger vehicles (cars, pickups, SUVs, and vans), use occupants where the field TypeV contains codes 1, 2, and 9. However, it's more realistic to use TypeV codes 1, 2, 8, 9, and 10 because this will include occupants of 'other' vehicle types (TypeV=8) and occupants of vehicles where no vehicle type was indicated on the UCR (TypeV=10), many of which are passenger vehicles. This excludes semi-truck drivers (TypeV=3) and bus drivers (TypeV=4).
- ✓ Unhelmeted motorcyclists can be identified using occupant-level data where OPCode is 9A and vehicle type is motorcycle or ATV (TypeV=5).
- ✓ Some officers have historically used OPCode=6 to indicate helmet used. For data prior 2012, helmeted motorcyclists should be identified using occupant-level data where OPCode is either 9 or 6, and the vehicle type is motorcycle or ATV (TypeV=5).

- 0 = Not stated
- 1 =Restraints not installed
- 2 = Restraints installed but not used
- 3 = Lap belt used
- 4 = Harness installed but not used (old code)
- 5 = Shoulder harness used
- 6 = Belt and harness used
- 7 = Ejected from vehicle (obsolete after 2019)
- 8 = Child Restraint Used Seat Type Unknown (obsolete after 2019)

- 8A = Rear-facing seat used
- 8B = Forward-facing seat with harness used
- 8C = Booster seat used
- 8D = Child restraint not used
- 9 = Helmet used
- 9A = Helmet not used
- NA = Not applicable
- 98 = Invalid code
- 99 = Left blank

16. Occupant Protection Properly Used

Database Field = OPProperlyUsed Source = UCR form, occupant-level variable Type = Character [Convert to text with SAS format \$OPPROP.] Length = 5

This field identifies whether the occupant protection was used *properly*. This field became available starting in 2012. The fields OPCode and OPProperlyUsed both contain data on belt and helmet usage and are adjacent to each other on the UCR form. Generally, OPCode is used for analysis of belt and helmet use.

|--|

N = No	98 = Invalid code	I = Indeterminate
$\mathbf{Y} = \mathbf{Y}\mathbf{es}$	99 = Left blank	(obsolete after 2019)

17. Airbag Deployed

Database Field =AirbagDeployed Source = UCR form, occupant-level variable Type = Character [Convert to text with SAS format \$AIRBAG.] Length = 4

This field indicates whether an airbag was deployed. This field became available starting in 2012.

Variable Options

B = Deployed - Front and side	N = Not deployed
F = Deployed - Front of person	NA = Not applicable
S = Deployed - Side of person	98 = Invalid code
C = Curtain	99 = Left blank
O = Other deployment (knee, air belt, etc.)	

18. Ejected

Database Field = Ejected Source = UCR form, occupant-level variable Type = Character [Convert to text with SAS format \$EJECTED.] Length = 9

This field indicates whether an occupant was ejected from a motor vehicle due to the crash. This field became available starting in 2012.

Variable Options		
N = Not ejected	T = Totally ejected	98 = Invalid code
P = Partially ejected	O = Not applicable	99 = Left blank

19. EMS Number

Database Field = EMSnum	
Source = UCR form, occupant-level variable	
Type = Character	Length = 14

This field indicates the identification number of any responding emergency medical service units involved in the crash. It may contain a variety of non-standard descriptions. This field became available starting in 2012.

20. Medical Transportation

Database Field =MedTrans Source = UCR form, occupant-level variable Type = Character [Convert to text with SAS format \$YESNO.] Length = 6

This field indicates whether an occupant was transported via EMS due to medical need. Usually it contains a 5-digit EMS number, but may contain a variety of non-standard descriptions. This field became available starting in 2012.

Variable Options	
N = No	98 = Invalid code
$\mathbf{Y} = \mathbf{Y}\mathbf{e}\mathbf{s}$	99 = Left blank

21. Belt

Database Field = Belt Source = UCR form, occupant-level variable Type = Numeric [Convert to text with SAS format DBELT.] Length = 3

This field is an obsolete variable that indicates the type of occupant protection (such as a seatbelt or helmet) and whether it was used. However, use Occupant Protection Code (OPCode) instead of the field Belt. Starting with crashes in 2012, the field Belt is replaced by Occupant Protection Code (OPCode). Before 2012, only the field Belt was available, but it had fewer options on child restraints and helmet usage compared with OPCode. The field Belt is derived from OPCode starting 2012 and after.

Code 9 has two meanings: airbag deployed for passenger vehicles and helmet used for motorcycles and ATVs. Prior to 2010, many officers used code 6 to identify that a helmet was used. For motorcyclists and bicyclists, this field does not distinguish between Helmet Not Used and Not Stated.

Variable Options	
0 = Not stated/No helmet	5 = Harness installed and used
1 = Seat belt not installed	6 = Combination belt and harness used
2 = Belt installed but not used	7 = Ejected from vehicle
3 = Belt installed and used	8 = Child seat used
4 = Shoulder harness installed but not used	9 = Helmet used/Airbag deployed
22. Helmet	

Database Field = HelmetSource = Derived from OPCode, occupant-level variableType = Character [Convert to text with SAS format \$HELMET.]Length = 1

This field indicates whether the occupant wore a helmet. The 1997 version of the UCR form contains a Helmet field, but the 2005 version of the UCR form and later do not contain a Helmet field. Therefore, starting in 2012, this field is derived from OPCode codes 9 and 9A only for motorcyclists and ATVs (TypeV codes 5) and bicyclists (TypeV code 6). The field is blank for all other drivers.

Variable Options	
N = No	U = Unknown
Y = Yes	

23. Driver Action - Parked

Database Field = DAparked Source = Copied from the vehicle-level field DAparked Type = Numeric

Length = 8

Length = 8

This field identifies whether the vehicle was parked at the time of the crash. It is copied from vehicle-level data to occupant-level data and repeated for each occupant in the vehicle. Occupants in parked vehicles are categorized as non-motorists in some types of analysis. To identify all non-motorists in crashes, use occupant-level data where any of the following apply: DAParked=1, or TypeV=6 (pedalcyclists), or TypeV=7 (pedestrians). The field DAparked became available starting in 2012. Before that, this information had been contained in the vehicle-level fields DACT1 and DACT2.

Variable Options

0 = No1 = Yes

24. Vehicle Type

Name = TypeV Source = Copied from vehicle-level field TypeV Type = Numeric [Convert to text with SAS format TYPEV.]

This field describes the general configuration or shape of the vehicle. Use this field to analyze people in crashes by type of vehicle. This field is copied from vehicle-level data and is repeated for each occupant in the vehicle. Pedestrians and pedalcyclists are categorized as non-motorized vehicles if involved in a crash with a motor vehicle.

- ✓ Code 1 represents VeBodyStyle code PC.
- ✓ Code 2 represents VeBodyStyle codes PK or LT.
- ✓ Code 3 represents VeBodyStyle codes HE, T2, T3, TB, TD, TH, TS, TU, TX, UH, and UT.
- ✓ Code 4 represents VeBodyStyle code BU, or VeCargoBody codes B1 or B2.
- ✓ Code 5 represents VeBodyStyle codes MC or AV, or DrSeatPos code MD.
- ✓ Code 6 represents DrSeatPos code PC, and takes precedence over VeBodyStyle when the value is PC.
- ✓ Code 7 represents DrSeatPos code PD, and takes precedence over VeBodyStyle when the value is PD.
- ✓ Code 8 represents VeBodyStyle code OT, RR or MH, unless the DrSeatPos is PD or PC.
- ✓ Code 9 represents VeBodyStyle codes VN or SV.
- ✓ Code 10 represents all vehicles that do not qualify for codes 1 through 9.

- 1 = Passenger car
- 2 = Pickup
- 3 = Semi
- 4 = Bus
- 5 = Motorcycle, moped, ATV
- 6 = Pedalcyclist
- 7 = Pedestrian
- 8 =Other
- 9 =Van, SUV or 4WD
- 10 = Unknown

25. Vehicle Body Style

Name = VeBodyStyleSource = Copied from vehicle-level field VeBodyStyleType = Character [Convert to text with SAS format \$VEBODYSTYLE.]Length = 18

This field describes the specific type of vehicle, as reported by the officer on the UCR form. This field is copied from vehicle-level data and repeated for each occupant. This field became available starting in 2012.

- ✓ Most users prefer the field TypeV instead of VeBodyStyle because TypeV contains a shorter list of vehicle types and identifies non-motorized vehicles (pedestrians and pedalcyclists).
- \checkmark Use this field to distinguish between motorcycles and ATVs.
- ✓ An ATV is a vehicle designed solely for off-road use. ATVs include 3- and 4-wheelers, OHVs (off-highway vehicles), and UTVs (utility side-by-side vehicles).
- ✓ A motorcycle is a motor vehicle having a seat or saddle and designed to travel on not more than three wheels. Motorcycles include mopeds, motor-assisted bicycles, dirt bikes, and motorized scooters with seats. Before June 2018, mopeds and dirt bikes were not definitively classified. They may be in the crash database as either an ATV or motorcycle. Also some vehicles straddle the definition between motorcycles and cars, but are classified as motorcycles. These have three wheels (with one in the back), seat riders in bucket seats instead of astride, and have steering wheels instead of handlebars. But they might not meet automobile safety standards. One example is the Polaris Slingshot.
- ✓ The VeBodyStyle code UT is often incorrectly reported on the UCR form to indicate a utility vehicle, when, in fact, this code indicates an unknown heavy truck greater than 10,000 lbs. During database cleaning, unless another variable indicates the vehicle is a heavy truck, the code UT is changed to SV.

- PC = Passenger car
- PK = Pickup
- SV = Sport utility vehicle
- VN = Van or minivan
- OT = Other passenger vehicle, pedestrian or pedalcyclist
- MC = Motorcycle (includes mopeds and motorized scooters)
- AV = All-terrain vehicle
- MH = Motorhome
- BU = Bus
- LT = Light truck with trailer (GCWR > 10,000lbs.)
- T2 = Single-unit truck (2-axle, 6-tire)
- T3 = Single-unit truck (3 or more axles)

- TU = Single unit truck with trailer
- TB = Truck tractor (bobtail)
- TS = Tractor/semi-trailer
- TD = Tractor/double
- TX = Tractor/triple
- TH = Other heavy truck
- UT = Unknown heavy truck > 10,000 lbs. (Obsolete code after 2017)
- UH = Unknown heavy truck > 10,000 lbs. (New code starting in 2018)
- HE = Heavy equipment
- RR = Train
- 98 = Invalid code
- 99 = Left blank

26. Alcohol Involvement of Vehicle Driver

Database Field =AlcInCar Source = Copied from vehicle-level field DAlc Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether the person was in a vehicle operated by an alcohol-involved driver. See vehicle-level data dictionary for details. This field is copied from vehicle-level data and repeated for each occupant of the vehicle. Use this field to identify whether occupants were in a vehicle operated by an alcohol-involved driver. However, to analyze data on alcohol-involved drivers, pedestrians or pedalcyclists, use the field DAlc in the vehicle-level data instead.

27. Drug Involvement of Vehicle Driver

Database Field = DrugInCar Source = Copied from vehicle-level field Drug Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether the person was in a vehicle operated by a drug-involved driver. See vehicle-level data dictionary for details. This field is copied from vehicle-level data and repeated for each occupant. Use this field to identify whether occupants were in a vehicle operated by a drug-involved driver. However, to analyze data on drug-involved drivers, pedestrians or pedalcyclists, use the field Drug in the vehicle-level data instead.

28. Alcohol Involvement in Crash

Database Field = AlcInAcc	
Source = Copied from crash-level field AlcInv	
Type = Numeric [Convert to text with SAS format INV.]	Length = 3

This field indicates whether alcohol was involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. Use this field to analyze data on all people in alcohol-involved crashes. However, to analyze data on only alcohol-involved drivers, pedestrians or pedalcyclists, use the field DAlc in the vehicle-level data. To analyze data on alcohol-involved crashes, use the field AlcInv in the crash-level data.

29. Drug Involvement in Crash

Database Field = DrugInAcc Source = Copied from crash-level field DrugInv Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether drugs or medication were involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. Use this field to analyze data on all people in drug-involved crashes. However, to analyze data on only drug-involved drivers, pedestrians or pedalcyclists, use the field Drug in the vehicle-level data. To analyze data on drug-involved crashes, use the field Drug in the vehicle-level data.

30. Pedestrian Involvement in Crash

Database Field = PEDinv Source = Copied from crash-level field PEDinv Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether any pedestrians were involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. This field does not indicate the number of pedestrians in the crash.

31. Motorcycle Involvement in Crash

Database Field = MCinv Source = Copied from crash-level field MCinv Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether any motorcycles or ATVs were involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. This field does not indicate the number of motorcyclists in the crash.

32. Pedalcyclist Involvement in Crash

Database Field = PECinvSource = Copied from crash-level field PECinvType = Numeric [Convert to text with SAS format INV.]Length = 3

This field indicates whether any pedalcyclists were involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. This field does not indicate the number of pedalcyclists in the crash.

33. Heavy Truck Involvement in Crash

Database Field = TRKinv	
Source = Copied from crash-level field TRKinv	
Type = Numeric [Convert to text with SAS format INV.]	Length = 3

This field indicates whether any heavy trucks were involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. This field does not indicate the number of heavy trucks in the crash.

34. Hazardous Material Involvement in Crash

Database Field = HZinv Source = Copied from crash-level field HZinv Type = Numeric [Convert to text with SAS format INV.] Length = 3

This field indicates whether any hazardous material was involved in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant. This field became available starting in 2012.

35. Top Factor Contributing to Crash

Database Field = TopCFacc Source = Copied from crash-level field TopCFacc Type = Numeric [Convert to text with SAS format TOPCF.] Length = 8

This field indicates the top contributing factor in the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

36. Top Contributing Factor of Vehicle

Database Field = TopCFcar Source = Copied from vehicle-level field TopCFcar Type = Numeric [Convert to text with SAS format TOPCF.] Length = 8

This field indicates the top contributing factor of the vehicle in the crash. See vehicle-level data dictionary for details. It is copied from vehicle-level data and repeated for each occupant in the vehicle.

37. Law Enforcement Agency

Database Field = Agency Source = Copied from crash-level field Agency Type = Numeric [Convert to text with SAS format AGENCY.] Length = 4

This field indicates the law enforcement agency (LEA) that submitted the crash report to NMDOT. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

38. County

Database Field = County Source = Copied from crash-level field County Type = Numeric [Convert to text with SAS format COUNTY.] Length = 8

This field indicates the county in which the crash physically happened. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

39. City

Database Field = City Source = Copied from crash-level field City Type = Numeric [Convert to text with SAS format CITY.] Length = 8

This field indicates the city or place in which the crash occurred. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

40. Urban or Rural Designation

Database Field = UrbnRurl Source = Copied from crash-level field UrbnRurl Type = Character

Length = 1

This field indicates whether the crash occurred in an urban or rural area. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

41. Road System

Database Field = System Source = Copied from crash-level field System Type = Numeric [Convert to text with SAS format SYS.] Length = 3

This field indicates whether the crash occurred on a roadway that is urban, rural non-Interstate, or rural Interstate. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

42. Crash Severity

Database Field = Severity Source = Copied from crash-level field Severity Type = Numeric [Convert to text using SAS format SEVERITY.] Length = 3

This field indicates the most severe level of injury in a crash and can be either fatal, injury or property damage only (PDO). See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

43. Crash Classification

Database Field = Class Source = Copied from crash-level field Class Type = Numeric [Convert to text using SAS format CLASS.] Length = 3

This field indicates the first harmful event that characterizes the crash type. The Crash Classification field on the UCR sets the limits for options in Analysis Code (immediately below). See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

44. Crash Classification Analysis Code

Database Field = Analysis Source = Copied from crash-level field Analysis Type = Numeric [Convert to text using SAS format ANALYSIS.] Length = 8

This field indicates the first harmful event that characterizes the specific manner of the crash type. The Analysis Code is a subfield of Crash Classification, which determines which codes can be used. See the crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

45. Light

Database Field = Light Source = Copied from crash-level field Light Type = Numeric [Convert to text using SAS format LIGHT.]

Length = 3

Length = 5

This field indicates the light condition at the time of the crash. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

46. Military Time

Database Field = MilitaryTime Source = Copied from crash-level field MilitaryTime Type = Character

This field indicates the time at which the crash occurred, expressed in 24-hour format (00:00 - 23:59). See crashlevel data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

47. Hour

Database Field = Hour Source = Copied from crash-level field Hour Type = Numeric [Convert to text with SAS format HOURS.] Length = 3

This field indicates the hour in which the crash occurred. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

48. Day of Week

Database Field = Day Source = Copied from crash-level field Day Type = Numeric [Convert to text with SAS format DAYW.] Length = 3

This field indicates the day of the week on which the crash occurred. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

49. Month

Database Field = Month Source = Copied from crash-level field Month Type = Numeric [Convert to text with SAS format MNTH.] Length = 3

This field indicates the month in which the crash occurred. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

50. File Location

Database Field = Loc Source = Copied from crash-level field Loc Type = Character

Length = 145

This field indicates the data entry network file location for internal tracking. This field contains personal identifiers. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

51. Image Location Database Field = ImageLoc Source = Copied from crash-level field Loc Type = Character

Length = 145

This field indicates the network file location of the image of the crash report for internal use only. This field contains personal identifiers and is not available for analysis. See crash-level data dictionary for details. This field is copied from crash-level data and repeated for each occupant.

List of Database Fields

Age7
Agency18
AirbagDeployed12
AlcInAcc16
AlcInCar16
Analysis19
Belt13
City18
Class19
County
CrashDate6
DAparked14
Day20
DrugInAcc16
DrugInCar16
Ejected12
EMSnum12
FirstName7
Helmet13
Hour
HZinv17
ImageLoc21
Injury9
LastName7
Light20
Loc

MCinv	17
MedTrans	13
MiddleName	7
MilitaryTime	20
Month	20
OccNo	7
OPCode	11
OPProperlyUsed	12
PECinv	17
PEDinv	17
PPLNo	6
Race	8
SeatPos	10
Severity	19
Sex	8
System	19
ТорСГасс	
TopCFcar	18
TRKinv	17
TypeV	14
UCRnumber	6
UrbnRurl	19
VeBodyStyle	15
VehNo	
Year	